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Abstract

The pressure-based PCICE numerical method [R.C. Martineau, R.A. Berry, The pressure-corrected ICE finite element
method (PCICE-FEM) for compressible flows on unstructured meshes, J. Comput. Phys. 198 (2004) 659] for computing
transient fluid flows of all speeds from nearly incompressible to high supersonic with strong shocks is simplified and
generalized. Its behavior is examined in the nearly incompressible limit and in the fully compressible limit. In the nearly
incompressible limit the PCICE algorithm is found to reduce to a generalization of the incompressible MAC method,
which includes the density gradient as a driving function in the pressure Poisson equation. In the fully compressible regime,
it is found to reduce to an expression equivalent to density-based methods for high-speed flow.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The pressure-corrected variant of the implicit continuous-fluid Eulerian (ICE) [2], or PCICE numerical
method has been presented [1] as a finite element method, PCICE-FEM, for computing fluid flows of all
speeds from low subsonic or nearly incompressible to high supersonic compressible. PCICE is a predictor–
corrector method for approximating the solution of the conservative form of the Euler/Navier–Stokes
equations:
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where q,~u, p, and T represent the fluid mass density, velocity, pressure, and temperature, respectively. In these
equations, s is the shear stress, et ¼ eþ ~u�~u

2
is the total energy density (where e is the internal energy density),

ht ¼ qetþp
q is the specific total enthalpy, and i(T) is a temperature-dependent energy source term. Fourier�s law

for thermal conduction has been assumed with k denoting the thermal conductivity. These equations represent
the balance of mass, momentum, and total energy, respectively. Because the PCICE method is not restricted to
any specific equation of state, the general functional form
p ¼ f ðq; eÞ ð4Þ

will be utilized throughout this development.

The objectives of this short note are twofold. First, it presents a simplified, yet generalized, description of
the PCICE method, independent of specific spatial discretizations and equations of state. Second, the behavior
of the PCICE method is examined in the nearly incompressible limit (cDt� l, where c is the acoustic wave
speed, Dt represents the time resolution of interest, and l represents the characteristic length of interest) as well
as in the fully compressible limit (cDt� l).
2. PCICE algorithm

The pressure-corrected implicit continuous-fluid Eulerian, or PCICE algorithm [1], is an ideal basis with
which to construct a fully coupled unified physics computer analysis code. This scheme, developed for all-
speed compressible and nearly incompressible flows, improves upon previous pressure-based methods in terms
of accuracy and numerical efficiency and gives a wider range of applicability. Because of the need to simulate
flows with shocks it is essential that both the governing equations and their discretized approximations be in
conservative form [3,4]. Unlike other ICE variants that have been proposed in the past, most of which are
entirely or partially in primitive form, the PCICE algorithm solves the conservative form of the governing
equations.

Other researchers have coupled, to varying extent, energy effects into ICE-type algorithms [5–8], but most
have utilized, entirely or partially, non-conservative forms which led to algorithms which are restricted to
smooth transient solutions (no discontinuity waves) or to steady solutions with sonic- and lower speeds.
Patnaik et al. [9] developed a ‘‘barely implicit’’ ICE-type algorithm in conservative form which primarily
couples the momentum and energy equations, similar to that of Cassuli and Greenspan [5]. The PCICE
algorithm efficiently incorporates an even higher degree of implicitness into a very general conservative
framework which can be utilized with either finite difference, finite volume, or finite element spatial repre-
sentations. In the PCICE algorithm, the total energy equation is sufficiently coupled to the pressure Poisson
equation to avoid iteration between the pressure Poisson equation and the pressure–correction equations.
Both the mass conservation and total energy equations are explicitly convected with the time-advanced
explicit momentum. The pressure Poisson equation then has the time-advanced internal energy information
it requires to yield an accurate implicit pressure. At the end of a time step, the conserved values of mass,
momentum, and total energy are all pressure-corrected. As a result, the iterative process usually associated
with pressure-based schemes is not required. This aspect has been found advantageous when computing
transient compressible flows, including flows with significant energy deposition, chemical reactions, or phase
change.

The pressure-based PCICE solution algorithm is composed of two fractional steps: an explicit predictor
step and an implicit pressure correction step which includes an elliptic Poisson equation which is solved for
new-time pressures and an explicit correction with the new pressures. The pressure, momentum, and density
in the governing hydrodynamic equations are treated in an implicit fashion. The so-called mass–momentum
coupling is obtained by substituting the momentum balance equations into the mass conservation equation to
eliminate time-advanced momentum–density (or mass flux) as an unknown. The time rate of density change in
the mass conservation equation is then expressed in terms of pressure and internal energy change by employ-
ing the equation of state. These substitutions result in a single second-order elliptic differential equation in
terms of pressure (pressure Poisson equation). This semi-implicit treatment has two advantages over explicit
schemes. First, the acoustic component from the explicit time step size stability criteria is removed, thus
eliminating the time integration stiffness that results from slow flows. Second, the pressure obtained with this
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semi-implicit treatment corrects the momentum to satisfy mass conservation requirements. This allows nearly
incompressible flows to be simulated with compressible flow equations, which can be used to simulate flows
from very low speeds to supersonic, including mixed flows with all flow speeds present.

Though our original description of the PCICE algorithm was in the context of a finite element-based
method, PCICE-FEM [1], with an ideal gas equation of state, it can be generally implemented within the con-
text of other spatial discretization methods (finite difference, finite volume, grid-free, etc.). Therefore, the
description of the PCICE algorithm given here will be kept free of specialized spatial discretizations and equa-
tions of state.
3. Temporal discretization

The PCICE algorithm is a predictor–corrector method for solving the following time discretization of bal-
ance equations (1)–(3) for mass, momentum, and energy, respectively:
qnþ1 ¼ qn � Dtr � ½uðq~uÞnþ1 þ ð1� uÞðq~uÞn�; ð5Þ
ðq~uÞnþ1 ¼ ðq~uÞn � Dt ~r � ðq~u�~uÞnþu � Dt ~r½upnþ1 þ ð1� uÞpn� þ Dtr � sn; ð6Þ
ðqetÞnþ1 ¼ ðqetÞn � Dt ~r � ½uðq~uÞnþ1hnþ1

t þ ð1� uÞðq~uÞnhn
t � þ Dtr � ðsn �~unÞ þ Dtr � ðkrT nÞ þ Dtin. ð7Þ
These equations are approximated with the following fractional two-step process.

3.1. Fractional Step 1

The predictor step first solves a portion of Eqs. (5)–(7), in order:
Momentum:
ðq~uÞ� ¼ ðq~uÞn � Dt ~r � ðq~u�~uÞnþu þ Dtr � sn; ð8Þ

where the divergence term is at a partially time-advanced level obtained by utilizing an explicit two-step or
predictor–corrector technique such as Lax-Wendroff, etc. (in the PCICE-FEM method [1], an efficient Tay-
lor–Galerkin method was used).

Mass:
q� ¼ qn � Dtr � ½uðq~uÞ� þ ð1� uÞðq~uÞn� ¼ qn � Dtr � u½ðq~uÞ� � ðq~uÞn� þ ðq~uÞnf g. ð9Þ

Total energy:
ðqetÞ� ¼ ðqetÞn � Dt ~r � ½uðq~uÞ� þ ð1� uÞðq~uÞn�hn
t þ Dtr � ðsn �~unÞ þ Dtr � ðkrT nÞ þ Dtin

¼ ðqetÞn � Dtr � u½ðq~uÞ� � ðq~uÞn� þ ðq~uÞnf ghn
t þ Dtr � ðsn �~unÞ þ Dtr � ðkrT nÞ þ Dtin. ð10Þ
It is important that the quantities q*, ðq~uÞ�, and (qet)* be advanced with high-order monotonic algorithms
such as FCT, TVD, ENO, etc. or that they be smoothed with another appropriate smoother such as the var-
iable diffusion method of Swanson and Turkel [10] used in the finite element version PCICE-FEM [1]. Using
the same notation (Æ)* for smoothed variables, the other variables are then obtained from
~u� ¼ ðq~uÞ
�

q�
; e�t ¼

ðqetÞ�

q�
; e� ¼ e�t �

~u� �~u�

2
; T � ¼ e�

cv
; p� ¼ f ðq�; e�Þ. ð11Þ
The pressure gradient term is not included in the partial momentum balance equation (8) because it will be
included implicitly in the next fractional step. Therefore the time step stability restriction for this fractional
step is the satisfaction of the material Courant condition, or the Courant condition based on flow speed.
Because the shear stress term in Eq. (8) and the heat conduction and energy source terms in Eq. (10) are trea-
ted explicitly, a stable time step based on these terms may still be too restrictive. To obtain additional stability
with larger time steps, these terms can be treated implicitly, either here in this fractional step, or in an
additional (subsequent or previous) fractional step (for which case these terms would not even appear in this
fractional step).
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3.2. Fractional Step 2

This step seeks to solve the following portion of the original discretized equations (5)–(7) to obtain new time
pressure.

Momentum:
ðq~uÞnþ1 ¼ ðq~uÞ� � Dtr½upnþ1 þ ð1� uÞpn� ¼ ðq~uÞ� � uDtrðpnþ1 � pnÞ � Dtrpn. ð12Þ

Mass:
qnþ1 ¼ q� � uDtr � ðq~uÞnþ1 � ðq~uÞ�
h i

. ð13Þ
Total energy:
ðqetÞnþ1 ¼ ðqetÞ� � uDtr � ðq~uÞnþ1hnþ1
t � ðq~uÞ�hn

t

h i
. ð14Þ
This is accomplished in a couple of steps, first by constructing a pressure Poisson equation which is solved to
obtain pressures at the new-time level, then correcting the dependent variables with these new-time pressures
to obtain Eqs. (12)–(14).

The pressure Poisson equation is constructed as follows. Substituting (12) into (13) gives
qnþ1 ¼ q� þ u2Dt2r � rðpnþ1 � pnÞ þ uDt2r � rpn
or
qnþ1 � qn ¼ q� � qn þ u2Dt2r � rðpnþ1 � pnÞ þ uDt2r � rpn

¼ dqþ u2Dt2r � rðpnþ1 � pnÞ þ uDt2r � rpn; ð15Þ
where dq = q* � qn. Note that dq is a smoothed quantity because q* has been smoothed.
Alternatively, using Eq. (9)
dq ¼ �Dtr � u½ðq~uÞ� � ðq~uÞn� þ ðq~uÞnf g;

where, again, a smoothed dq is obtained by using the smoothed value ðq~uÞ�. Adopting this approach, Eq. (15)
can be written as
qnþ1 � qn ¼ �Dtr � u½ðq~uÞ� � ðq~uÞn� þ ðq~uÞnf g þ u2Dt2r � rðpnþ1 � pnÞ þ uDt2r � rpn. ð16Þ

From the equation of state (EOS)
p ¼ f ðq; eÞ

one can obtain
dq ¼ 1
of
oq

dp �
of
oe
of
oq

de;
where d just indicates a perturbation or change in a quantity (not to be confused, at this point, with the d of
Eq. (15)). This leads to the simple approximation
qnþ1 � qn 	 1

of
oq

� �� ðpnþ1 � pnÞ �
of
oe

� ��
of
oq

� �� ðe� � enÞ. ð17Þ
The pressure Poisson equation, in terms of dp = pn+1 � pn, is finally obtained by substituting (17) into (16)
giving
1

of
oq

� �� ðpnþ1 � pnÞ �
of
oe

� ��
of
oq

� �� ðe� � enÞ

¼ u2Dt2r � rðpnþ1 � pnÞ � Dtr � fu½ðq~uÞ� � ðq~uÞn� þ ðq~uÞng þ uDt2r � rpn
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or
1

of
oq

� �� ðpnþ1 � pnÞ � u2Dt2r � rðpnþ1 � pnÞ

¼
of
oe

� ��
of
oq

� �� ðe� � enÞ � Dtr � u½ðq~uÞ� � ðq~uÞn� þ ðq~uÞnf g þ uDt2r � rpn. ð18Þ
Numerical solution of this equation by an efficient, elliptic partial differential equation solver yields the new
pressure distribution, pn+1.

The other dependent variables are then updated, or corrected, with the new-time pressures as follows, in
order:

Momentum:
ðq~uÞnþ1 ¼ ðq~uÞ� � Dtr½upnþ1 þ ð1� uÞpn�. ð19Þ

Mass:
qnþ1 ¼ q� � uDtr � ½ðq~uÞnþ1 � ðq~uÞ��. ð20Þ

Total energy:
hnþ1
t ¼ ðqetÞ� þ pnþ1

qnþ1
; ð21Þ

ðqetÞnþ1 ¼ ðqetÞ� � uDtr � ðq~uÞnþ1hnþ1
t � ðq~uÞ�hn

t

h i
. ð22Þ
4. Compressible and incompressible limits

The objective here is to examine the compressible and incompressible limiting forms of the PCICE algo-
rithm. For simplicity, the particular form resulting from choosing u = 1.0 will be examined. For this case,
the pressure Poisson equation (18) becomes
1

of
oq

� �� ðpnþ1 � pnÞ ¼ Dt2r2pnþ1 þ
of
oe

� ��
of
oq

� �� ðe� � enÞ � Dtr � ðq~uÞ�. ð23Þ
Dividing by Dt, noting that the isentropic sound speed c* is given by
ðc�Þ2 ¼ p�

ðq�Þ2
of
oe

� ��
þ of

oq

� ��
;

and introducing
1

of
oq

� �� ¼ A�

ðc�Þ2
; where A� ¼ 1þ

p� of
oe

� ��
ðq�Þ2 of

oq

� ��
2
64

3
75;
gives
A�

ðc�Þ2
pnþ1 � pn

Dt
¼ Dtr2pnþ1 þ

A� of
oe

� ��
ðc�Þ2

e� � en

Dt
�r � ðq~uÞ�. ð24Þ
If Eq. (24) is multiplied by a characteristic length, l, and a characteristic time, sc ¼ l
c�, is introduced, the pres-

sure Poisson equation becomes
sc

pnþ1 � pn

Dt
¼ lc�Dt

A�
r2pnþ1 þ sc

of
oe

� �� e� � en

Dt
� lc�

A�
r � ðq~uÞ�. ð25Þ
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The characteristic time sc approximates the time it takes an acoustic wave (traveling with velocity c*) to prop-
agate the distance (l) characterizing the portion of our solution domain of interest and effecting the solution
change. While incompressible fluids do not physically exist, such a mathematical model can be conceived by
supposing the time resolution of interest corresponds to Dt. Thus, if the case is desired in which sc� Dt, then
necessarily the resolution of the physical acoustic waves which produce the solution change is not of interest.
Furthermore, a characteristic time su ¼ l

j~uj can be identified which approximates the time it takes to advect the

solution a distance l. In the incompressible limit sc� Dt < su, or in other words c*Dt� l, which implies that
sc

Dt ! 0 and the pressure Poisson equation (25) effectively reduces to
r2pnþ1 ¼ r � ðq~uÞ
�

Dt
. ð26Þ
Obviously the incompressible limit also implies that j~ujc� �
j~ujDt

l < 1, or the Mach Number� 1. The correspond-
ing, traditional MAC-type pressure Poisson equation [11], without convective terms, is
r2pnþ1 ¼ qnr �~u�

Dt
. ð27Þ
In this equation, the computed pressure field will be consistent with the requirement for incompressible flow
fields that the velocity field be divergence-free. However, Eq. (26) additionally allows for potentially important
spatial gradients in the density field to drive the pressure Poisson equation, and thus to be coupled with the
pressure and velocity fields.

On the other hand, for fully compressible flows su > sc� Dt, or c*Dt� l , and the pressure Poisson equa-
tion (25) can be rewritten as
1

of
oq

� �� pnþ1 � pn

Dt
�

of
oe

� ��
of
oq

� �� e� � en

Dt
¼ �r � ðq~uÞ� ð28Þ
(as seen from Eq. (17)) which is effectively a density-based compressible flow algorithm since it is easily recognized
that the left side of this equation is an approximation for the term oq

ot . In fact, the combination of fractional step 1
above with pressure equation (28) and the correction equations (19)–(22), to which the PCICE methods reduces
in this limit, constitutes an explicit, predictor–corrector algorithm for fully compressible flows.
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